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What is the Talk about? (1/2)

INC
MOV
LSL
SBC
EOR
SUB

O O bW N

RO;

R1,

R1;

R1,
RO,
RO,

e Goal: Affine transfer

RO; functions that relate interval
. boundaries [Monniaux, POPL’'09]

R1;

r1; °* Wraps are ubiquitous on 8-

R1; bit architecture

* Guard wrapping inputs using
OCtagons [Mine, HosC'06]
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What is the Talk about? (2/2)

INC
: MOV
LSL
SBC
EOR
SUB

O O bW N

RO;

R1,

R1;

R1,
RO,
RO,

RO;

R1;
R1;

R1;

(127 < 70 < 127)
= (r0f = =128 Ar0; = —128)

(—128 <r0 < —2)
= (r0f = —r0y, — 1 AP0} = —10; — 1)

(—1 < 70 < 126)
= (r0f =r0; + 1 A7r0; =r0, + 1)

* Key idea: Boolean encodings of semantics

 Compute abstractions of affine relations and
guards separately using SAT
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Guards for Wrapping

* Consider instruction ADD r0 rl
* Boolean encoding (outputs are primed):

p(c) = (A_,r0'[i] ® r0fi] ® rl1[i] @ c[i]) A =c[0] A
(AN9_geli + 1] < (rO[i] Axd[d]) V (rO[i] A c1[i]) V (r1[i] A ci])

* For example, enforce overflow:
p(c) = ¢(c) A (—r0[7] A —r1[7] AT0'[7])

* Then ¢(c)’ characterizes overflow-case only
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Characterization of Optimal Bounds

* Quards are of the form +v; + v, < d

e d is characterized as [Monniaux, POPL’09]-
— It is an upper bound for any +v; & v
— For any other upper bound d’, we have d < d’

* The ,for any” manifests itself in terms of
universal quantification

— Which is trivial for CNF formulae
— Simply strike out all literals

» ,Exists”is more complicated
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Guards in Boolean Logic

» Safety:
v = VrOo:Vrl:(p=+r0+trl <d)
* Optimality:
po o= Vro:vr1:Vd : ((¢p= 2071 <d)=d<d)

* Then solve v A 1 using SAT after g-elimination

* Observe that 1 interacts with v to impose an
optimal bound
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Boolean Characterization for Intervals

* Very similar formulation for relation between
input- and output-intervals (but more
technically involved)

* Also uses two-staged formulation to
— First characterize safe output intervals
— And then impose optimality

* However, still need to compute affine
relations
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Boolean Characterization for Intervals

Vr0 : Vrl :vro' : vrl :
((rO; <r0<7r0, A7T1; <7l <rly) Ayp) = safety

(rOF <r0" <7r0X ArlF <rl’ <rl})

A
Vr0; : Vr0!, :Vrl) :Vrl), :Vr0 :Vrl :Vr0 : Vrl' :
((r0; <r0< 710, Ar1; <rl1 <rly,) Ayp) =
(r0; < 70" <r0, Arl; <rl’ <rl)) =
(r0; < r0F Ar0r <10, Arl; <rlf Arll <rl))

optimality
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Key Idea: Affine Closure

* Obtain a solution of formula using SAT
* Represent solution as matrix

* Add disequality to obtain new solutions
* Join with previous matrix

* Add disequality to obtain new solutions

* Eventually stabilizes since domain is finite [reps
et al., VMCAI'04]
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Example: Affine Closure

 Compute affine relations between variables z,
vandy

 Could also be our Boolean characterization of
intervals
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Example: Affine Closure

* 1st solution: (v= =2)
1 0 0]0 1 0 01]0
[0 0 O]1]ulO0 1 0/0 01 00
0 0 1]2 0O 0 1]2
* 2nd solution: (v = -1 y =0,z =0)
1 0 0]0 1 0 O
O 1 0|0 (U] 0 1 O ()
0 0 1]2 0O 0 1]0

* 3rd solution: (v =0,y =
'20—1‘—2]LI (1)(1)
01 0 |0 -

e Result: 2-v+y—2z=-2
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Applying Transfer Functions

 Amounts to linear programming

* Given an octagonal guard ¢ and input
intervals ;

 Treat affine transfer function f as cost function
and maximize/minimize f subjectto gAi

* Solve using Simplex or branch-and-bound
(runtime vs. precision)
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Example: Applying Transfer Functions

(127 < r0 < 127)

o Input = (r0f = —128 Ar0} = —128)
= (=3 <r0<4) (—128 < r0 < —2)
= (r0f = —r0y, — 1 AP0} = —r0; — 1)
(—1 < r0<126)

= (r0y =r0; +1Ar0; =7r0, + 1)

* Solving the two remaining linear programs
thenyields: g+ — g

r0; =5
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Drawbacks

* Characterization requires quantifier alternation
* Especially existential quantifier elimination is
difficult
— Recall that we need output in CNF

— Otherwise, universal quantification would be tricky

e Various techniques exist, e.g., resolution, BDDs

[Lahiri et al., CAV'03 & CAV’06], SAT [Brauer and King, CAV’11]
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Intuition

 Observe: abstraction is not dissimilar to
universal quantification

— Gives a relation that holds for all values

* |s it possible to come up with an approach
that does not need alternating quantifiers?

— Yesl!

* Solution: Dichotomic/binary search
— Implemented as incremental SAT [codish et al., TPLP’08]
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Algorithm by Picture

r0O+rl=d
8
_% O 28
<€ > € >
27
<€ > € >
26
<€ > <€ >
© 26 492490
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Octagons

using Dichotomic Search

* Consider computing guards for ADD RO R1

in overflow
* Then 470 -

mode

-r1l < d, thus

—28 < d <28

=

—28<d<-1)Vv(0<d<2%)

* Use SAT solver to find out which disjunct holds
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Octagons using Dichotomic Search

* ¢ encodes ADD RO R1
* Then ¢' = A (r0+rl =d)
* Is ¢’ N —d[10] satisfiable? Yes!
—Hence (0 <d < 2°)
& (0<d<2"T—-1)V (27 <d<2%)
* Proceed with ¢ = ¢’ A =d[10] A d[9] to give
27 < d <28
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Linear Templates using
Dichotomic Search

* Have the form Y., ¢; - v; < d where the ¢;
are constants, hence { is bounded

* We can thus always apply binary search
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How About Polynomials?

 Consider MUL RO RZ2; ADD RO R1
— Assume neither operation overflows

* Relation is non-affine, analysis gives T
* |dea:

— Compute affine closure as before

— While doing so, perform polynomial extension
[Miller-Olm & Seidl, ICALP’04]
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Polynomial Extension by Example

e 1stsolution (r0=2,r1=4,r2=3,70" = 10)
— Matrix

(N

—_ o O
_ O O
L =~

10

— Add monomial for »0 -2 to give
) , -

4

3

10
0O 0 0 0 1] 6

0
0
0
1

o O O O
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Polynomial Extension by Example

Now search for solution that violates »0-r2 =6
SAT gives (r0 =3,r1 =4,r2 = 8,70’ = 28) which

implies r0-r2 =24
Matrix representation

Join with first solution

oo O O =

o O O~ O

S O = OO

o R O O O

= O O O O

()
H~ OGO OO0 = W

DO
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Polynomial Extension by Example

e After five iterations, we get the joined system
1 0 -1 0 —1/|0]
* Equivalentto r0'=71+70-r2

— Taken from code that indexes into two-
dimensional array

* Observe: need to encode polynomials in SAT

— It’s well-known how to do that [Fuhs et al., SAT'07]
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So as to not cause offense

D. Monniaux: Automatic Modular Abstractions for Linear
Constraints (POPL'09 & LMCS‘10)

A. Mine: The Octagon Abstract Domain (HOSC'06)

A. King, H. Spndergaard: Automatic Abstraction for Congruences
(VMCAI‘10)

T. Reps, M. Sagiv, G. Yorsh: Symbolic Implementation of the Best
Transformer (VMCAI‘04)

M. Miller-Olm, H. Seidl: A Note on Karr’s Algorithm (ICALP‘04)

J. Brauer, A. King: Automatic Abstraction for Intervals using Boolean
Formulae (SAS‘10)

J. Brauer, A. King: Transfer Function Synthesis without Quantifier
Elimination (ESOP‘11 & submitted to LMCS)
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Summary

* Deriving transfer functions for bit-vector
programs using SAT solving

 Combination of octagons and affine equalities

* Two approaches:
— Quantifier-based characterization

— Use incremental SAT solving

* Easily extended to polynomial relations
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Future Work

* Transfer functions for loops
— Monniaux (POPL‘09) did this for linear constraints
— Complicated characterization explodes in Boolean
logic though

* More general classes of linear constraints than
n
2i=1Ci Vi < d
— The ¢; are constants

— How about TVPI or polyhedra? Coefficients are
variable then, probably requires approximation
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Thank you very much!
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